If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2-3p-9=0
a = 2; b = -3; c = -9;
Δ = b2-4ac
Δ = -32-4·2·(-9)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-9}{2*2}=\frac{-6}{4} =-1+1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+9}{2*2}=\frac{12}{4} =3 $
| -5(-3x+6)=7 | | 17x^2+32x+15=0 | | 5y-34=-2(-7y+1) | | -48=7a-35 | | Q=42-0.7t | | 4(-6x+4)-4x=2 | | 32121312312312312313x+9832749294729873748372923=099999999999999999999999999999999999998428648273682568746826428764283764 | | 699x+087x+21+2=55 | | 5x^2+52=4x^2 | | 6x+7(x+6)=-23 | | 20=10x−6(2x+5) | | x(3x+4)=-(9+2x) | | 20=10x−6(2x+5)20=10x−6(2x+5) | | 4(5+7p)=-16-8p | | 35=(a-1) | | 4(4x+1)=2 | | 239=5-v | | 4(k-1)=17+7k | | 12.44=2g+3.98 | | (x+5)+(2x+7)+(4x+1)=180 | | -108=-4(3+3n) | | 4(2x+8)=11x+5-3x+27 | | Y+4x=22 | | 17x+43=1457 | | -116=-4(5k+4) | | 90=0.25x | | 13/b=52 | | 62.4=3r | | 5x+8+26+2x=180 | | 5x+8+26+2=180 | | 180=4y+3 | | 5x+8=26+2 |